BASE CONVERSION

David Greenstein Monta Vista High School

DECIMAL/OCTAL/BINARY

• On and off can be thought of as 0 and 1.

• 0 and 1 are known as bits or <u>BI</u>nary digi<u>T</u>.

Decimal (base 10)	Octal (base 8)	Binary (base 2)
0	0	0
1	1	1
2	2	10
3	3	11
4	4	100
5	5	101
6	6	110
7	7	111
8	10	1000
9	11	1001
10	12	1010

LARGE NUMBERS IN BINARY

Break down binary "word" into powers of 2.

Decimal	Binary 2 ³	2 ²	21	2 0
2	0	0	1	0
5	0	1	0	1
15	1	1	1	1

What about 35?

OCTAL & HEXADECIMAL

- Octal has a base of 8 or3 bits
- Hexadecimal has a base of 16 or 4 bits
- Both are useful for very long numbers or data with a large range (like color and addresses in memory)

Octal	Hexadecimal
0	0
1	1
2	2
3	3
,,4	,, 4
11	9
12	A
13	В
14	C
15	D
16	Е
17	F
20	10

OCTAL CONVERSION

127₈ = ?₂

Binary	Octal	
000	0	
001	1	
010	2	
011	3	
100	4	
101	5	
110	6	
111	7	

CREATE A CONVERSION CHART

Decimal	Binary	Octal	Hex
0			
1			
2			
3			
4			
5			
6			
7			
8			
9			
10			
11			
12			
13			
14			
15			
16			

$$1101011010110_2 = ?_{16}$$

1) Group the binary number into sets of 4 digits from right to left.

1 1010 1101
$$0110_2 = ?_{16}$$

$$1101011010110_2 = ?_{16}$$

- 1) Group the binary number into sets of 4 digits from right to left.
- 2) Pad zero digits to the left of your number to make the number of digits a multiple of 4.

0001 1010 1101 $0110_2 = ?_{16}$

$$1101011010110_2 = ?_{16}$$

- 1) Group the binary number into sets of 4 digits from right to left.
- 2) Pad zero digits to the left of your number to make the number of digits a multiple of 4.
- 3) Using your conversion chart, convert each 4 digit group to a hexadecimal number.

0001 1010 1101
$$0110_2 = 1AD6_{16}$$

Convert this binary into hexadecimal.

10100101110000110101102

Convert this into decimal.